skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fan, Xiujun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Single-atom catalysts (SACs) maximize the utility efficiency of metal atoms and offer great potential for hydrogen evolution reaction (HER). Bimetal atom catalysts are an appealing strategy in virtue of the synergistic interaction of neighboring metal atoms, which can further improve the intrinsic HER activity beyond SACs. However, the rational design of these systems remains conceptually challenging and requires in-depth research both experimentally and theoretically. Here, we develop a dual-atom catalyst (DAC) consisting of O-coordinated W-Mo heterodimer embedded in N-doped graphene (W 1 Mo 1 -NG), which is synthesized by controllable self-assembly and nitridation processes. In W 1 Mo 1 -NG, the O-bridged W-Mo atoms are anchored in NG vacancies through oxygen atoms with W─O─Mo─O─C configuration, resulting in stable and finely distribution. The W 1 Mo 1 -NG DAC enables Pt-like activity and ultrahigh stability for HER in pH-universal electrolyte. The electron delocalization of W─O─Mo─O─C configuration provides optimal adsorption strength of H and boosts the HER kinetics, thereby notably promoting the intrinsic activity. 
    more » « less